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Acronyms and Abbreviations 

AGL above ground level 
ARM Atmospheric Radiation Measurement 
AWR ARM West Antarctica Radiation Experiment 
CACTI Cloud, Aerosol, and Complex Terrain Interactions 
COR Córdoba, Argentina (CACTI campaign) 
LDR linear depolarization ratio 
MPL micropulse lidar 
MPLCMASKML Micropulse Lidar Cloud Mask Machine-Learning 
NaN not a number 
NRB normalized relative backscatter 
OLI Oliktok Point 
SGP Southern Great Plains 
UTC Coordinated Universal Time 
VAP value-added product 
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1.0 Introduction 
Cloud detection algorithms of various techniques have been developed and applied to atmospheric 
ground-based lidar data to identify cloud boundaries and produce clouds masks. While these algorithms 
are able to identify a wide variety of cloud types and conditions, it is often observed that the algorithms 
can still fail to accurately detect clouds that are readily discernible when inspecting the lidar imagery. 
Based on this observation, an alternative approach for cloud detection is to take advantage of 
machine-learning capabilities and the trained human eye as an interpreter of lidar images, and in turn, to 
train a neural network to recognize the desired features in the lidar data. 

This approach has been applied to data from the Atmospheric Radiation Measurement (ARM) user 
facility’s micropulse lidar (MPL) systems to develop a machine-learning model that can segment images 
semantically and produce pixel-to-pixel predictions of cloud in lidar images (Cromwell et al. 2019). In 
addition to these cloud predictions, the model can provide a confidence rating of each pixel prediction. 
The cloud prediction output from the machine-learning model developed is available in the value-added 
product (VAP) Micropulse Lidar Cloud Mask Machine-Learning (MPLCMASKML). This VAP provides 
the cloud mask generated from the prediction output as well as the number of cloud layers and the 
cloud-layer boundaries. 

The cloud detection model developed for the MPLCMASKML VAP was trained exclusively with data 
from the MPL located at the ARM Southern Great Plains (SGP) observatory between January and March 
of 2015 plus isolated days with heavy aerosol loading. Although trained with site-, date-, and 
instrument-specific data, the performance of the model has been quite good when applied to other ARM 
MPL data sets. The transfer-learning abilities of the model from one data set to the next are discussed 
further in Summary and Future Works. 

2.0 Overview of Model 
The machine-learning model in the MPLCMASKML has been trained to identify cloud pixels from MPL 
lidar images. The images provided to the model for both input and training are two-channel, with the 
MPL normalized relative backscatter (NRB) as one channel and the corresponding linear depolarization 
ratio (LDR) calculation as the other. This permits the simultaneous assessment of the lidar backscatter and 
the lidar attenuation behavior from the NRB with the cloud phase, clear sky, or aerosol indication from 
the LDR. Additionally, because a cloud mask is the primary output of the machine-learning model, a 
cloud mask corresponding to the two-channel lidar images is also required for the training and testing 
process. The cloud mask product from the ARM Micropulse Lidar Cloud Mask (MPLCMASK) VAP 
(Flynn 2020) is used for pre-training steps while “hand-labeled” cloud masks are used during the final 
training. The hand-labeled cloud masks are created from visual inspection of the two-channel images. 
Further details on the input and training images and cloud masks are provided in sections 3.0 and 5.0 of 
this report. 

The method used to train the MPLCMASKML cloud detection model was a three-stage process that 
included (1) cloud or no-cloud classification, (2) pre-training for cloud location, and (3) final training 
(fine tuning) for cloud location. This machine-learning approach can be described as a semi-supervised 
learning method based on the labeling of the training data used in the multiple stages. In the first stage, 
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890 images with cloud and 890 images without cloud were used to train a classification model to 
determine whether an image contains any cloud or not. In the second stage, the model was trained 
(“pre-trained”) with cloud mask from the MPLCMASK VAP. These VAP cloud masks were not the 
desired output but were close enough to be useful to initialize the model. In this case, 4200 images were 
used for this step. For the final training, over 100 days of cloud masks were created for fine tuning as well 
as assessing the performance of the end model. These “hand-labeled” cloud masks were flipped to create 
a mirror image, effectively doubling the amount of data for the fine-tuning stage. Hold-out data were 
randomly selected from the hand-labeled cloud masks and were not used for training but were reserved 
for assessing the model performance. This assessment included calculating the model precision 
(percentage of predicted clouds that are actual clouds) and recall (percentage of clouds that are predicted 
as clouds). From these statistics a third model performance metric, the F1-score (harmonic mean of the 
precision and recall), was also calculated. 

3.0 Model Pre-Training and Training Data 

3.1 Pre-Training 

The pre-training data were from ARM fast-switching polarized SGP MPL measurements that have been 
processed by the MPLCMASK VAP. The VAP output used included NRB, LDR, and cloud mask with 
30 seconds averaged for time resolution, and 30 meters averaged for vertical height resolution. To allow 
more efficient training of the model, each 24-hour day of data was divided into quarters. Each quarter had 
a small amount of overlap with adjacent quarters in the same day and was therefore just over six hours 
long. 

3.1.1 Classification Pre-Training Data 

For the pre-training classification stage of the model, a set of 1780 quarter days was selected. Each 
quarter of data has image-level annotations identifying whether the quarter day contains clouds. A quarter 
day is marked as containing clouds if the MPLCMASK cloud mask product contains clouds. The data set 
was divided evenly between quarter days with clouds (890) and without clouds (890). 

3.1.2 Cloud Location Pre-Training Data 

The pre-training cloud location data consists of more than 4200 quarter days. These training data were 
selected between the years 2010 and 2015 and included NRB and LDR as well as the 
MPLCMASK-derived cloud masks. 

3.2 Final Training for Cloud Location 

The final training data consists of over 100 days of hand-labeled cloud masks for MPL measurements 
from the SGP site. Most of the data were from between January 1 and March 30, 2015, with some 
supplementary data being added between April and December of the same year. The hand-labeled data 
were created using Matlab tools developed specifically for this work. During the labeling process the user 
can view and inspect the NRB and LDR imagery. After visually assessing the data, the user has different 
options on how to select which pixels in the MPL imagery are cloud. Much of the labeling can employ 
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basic image-processing techniques, but portions of the labeling do require pixel-by-pixel discrimination. 
The labeled cloud masks are flipped to effectively double the final training data available. 

The definition of what is cloud for cloud masks varies in published descriptions and is particularly 
influenced by what type of study is using the retrieved cloud location data. The cloud mask hand-labeling 
for the final training data closely followed the definition adopted in Wang et al. (2001). The labeling 
attempts to exclude liquid precipitation and virga while including all other liquid droplet, ice particles, 
and mixed-phase hydrometeors that can be considered radiatively important suspended cloud particles. 

4.0 VAP Basic Steps and Flow Chart 
The following steps briefly describe the logic used in the VAP: 

1. Input Pre-Processing of input data from MPLCMASK VAP.

a) Real log base 10 of NRB (log[NRB]) to improve visualization of the lidar imagery.

b) Missing values, infinite values, or not-a-number (NaN) values are set to the daily minimum.

c) For each day, log(NRB) is then zero-centered by subtracting the mean from the log(NRB) and
normalized by dividing by the standard deviation of the zero-centered log(NRB).

d) The LDR valid data range is between 0 and 1. Missing values and NaNs are set to 0, any values
greater than 1 are set to 1, and values less than 0 are set to 0.

2. Run trained model on each quarter day to estimate cloud mask for each quarter day.

The 24-hour day is divided into the following fourths (quarter-days):

First quarter: time bins 0 to 800 (00:00:00 to 06:40:00 UTC) 

Second quarter: time bins 680 to 1480 (05:40:00 to 12:20:00 UTC) 

Third quarter: time bins 1400 to 2200 (11:40:00 to 18:20:00 UTC) 

Fourth quarter: time bins 2080 to 2880 (17:20:00 to 24:00:00 UTC). 

3. Merge quarter-day cloud masks into full-day cloud mask.

Three overlapping time periods of cloud mask from the quarter days need to be merged:

05:40:00 to 06:40:00 UTC 

11:40:00 to 12:20:00 UTC 

17:20:00 to 18:20:00 UTC. 

For a given time and height location in the overlap period, if at least one quarter-day cloud mask has 
the location marked as a cloud, then the location in the merged mask is marked as a cloud. 

4. Apply clustering algorithm and merge layers in cloud mask.

a) Run cluster test from MPLCMASK VAP on all bins identified as cloud above 10 km to detect
and attempt to eliminate any small false clouds or clutter (Flynn et al. 2020).
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b) Merge cloud bins time-wise if clouds are less than 2 time bins apart (1 minute).

c) Merge cloud bins height-wise if clouds are less than 4 bins apart (120m).

5. Calculate cloud base, cloud top, and number of cloud layers.

5.0 Input Data 
The primary inputs required for MPLCMASKML are NRB and LDR calculations from polarized ARM 
MPL systems. Historically, the ARM user facility operated single-wavelength non-polarized MPLs at all 
observatories and mobile facilities. In 2004, polarized MPL systems were installed at all observatories 
and mobile facilities. In addition, polarized MPL systems were upgraded starting in June 2010 to 
fast-switching systems to allow improved switching capability between the linear and circular 
polarization channels. While alternative versions of the VAP can be developed to handle older MPL data 
sets, the current version of MPLCMASKML is only processing fast-switching polarized MPL data. The 
processed measurements are provided by MPLCMASK. 

The MPLCMASK VAP produces one output file. The name of the file is: 

SSS30smplcmask1zwangXX.c1.YYYYMMDD.hhmmss 

Where: 

· SSS is the site of the instrument (e.g., sgp)

· XX is the facility (i.e., C1, C2, etc.)

· YYYY is the year

· MM is the month of the year

· DD is the day of the month

· hh is the hour of the day

· mm is the minute of the hour

· ss is the second of the minute of data start.

6.0 Output Data 
The MPLCMASKML VAP produces one output file. The name of the output file is: 

SSSmplcmaskmlXX.c1.YYYYMMDD.hhmmss 

Where: 

· SSS is the site of the instrument (e.g., sgp)

· XX is the facility (i.e., C1, C2, etc.)

· YYYY is the year
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· MM is the month of the year

· DD is the day of the month

· hh is the hour of the day

· mm is the minute of the hour

· ss is the second of the minute of data start.

Table 1. Primary variable in output data set. 

Variable (dimensions) Long Name 

backscatter (time, height) Total attenuated backscatter 

range_corrected_backscatter (time, height) Range-corrected total attenuated backscatter 

preprocess_backscatter (time, height) Preprocessed range-corrected total attenuated backscatter for 
model 

linear_depol_ratio (time, height) Linear depolarization ratio 

preprocess_linear_depol_ratio (time, height) Preprocessed linear depolarization ratio for model 

cloud_mask_dl (time, height) Cloud mask from deep learning model 

cloud_mask_confidence (time, height) Model confidence in cloud prediction, where 1 is highly confident 
point is cloud, 0 is highly confident point is not cloud 

cloud_mask (time, height) Cloud mask from deep-learning model with clustering and 
merging applied 

cloud_base (time) Lowest cloud base height above ground level (AGL) 

cloud_top (time) Highest cloud top height AGL 

num_cloud_layers (time) Number of cloud layers 
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7.0 Example Plots 

Figure 1. Example plots from the SGP show the log of the normalized relative backscatter (log10 
NRB), linear depolarization ratio (LDR), and cloud masks for MPLCMASK and 
MPLCMASKML for December 24, 2017. The strength of the machine-learning approach is 
apparent on this day when moderate aerosol loading is likely interfering with accurate cloud 
boundary identification for the MPLCMASK algorithm in the boundary layer between 
10-14 UTC. Additionally, the MPLCMASKML is able to identify the attenuating cloud
below 500 m between 10-11 UTC.
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Figure 2. Sample MPLCMASKML plots from the SGP show the log of the normalized relative 
backscatter (log10 NRB), linear depolarization ratio (LDR), and cloud masks for the 
MPLCMASKML and MPLCMASK for January 28, 2015. The time series for this example 
begins close to sunrise with the resulting background (noise) increasing with time. Cirrus 
clouds are present and centered around 10 km. Because the clouds do not fully attenuate the 
lidar signal, this is a good case to illustrate the cloud mask’s performance when the NRB and 
the LDR signal-to-noise ratios are degraded. MPLCMASKML identifies most of the cirrus 
cloud but does not detect some of the thinner cloud edges. The MPLCMASK detects some 
edges of the cirrus clouds that the machine-learning version misses, but then tends to 
oversample both the cloud top and bottom boundaries. 

8.0 Summary and Assessment 
The MPLCMASKML is an alternative approach to traditional cloud-detection algorithms for atmospheric 
ground-based lidar data. This VAP applies a machine-learning model to data from the ARM 
fast-switching polarized MPL systems to produce a daily cloud mask with a corresponding confidence 
rating and identifies the number of cloud layers as well as the cloud-layer boundaries. The model was 
trained using MPLCMASK cloud masks and hand-labeled ground truth correlated with calculations of 
NRB and LDR from the MPL. 

8.1 Model Assessment 

The example plot provided in this technical report (section 7) demonstrates the overall observed 
advantages when compared to the VAP predecessor as (1) less exaggerated cloud boundaries, 
(2) improved cloud layer separation, and (3) cloud identification below 500 m.

The model performance can also be evaluated by comparing the model and ground truth cloud masks and 
calculating the precision, recall, and the F1 score, defined as the harmonic mean of the precision and 
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recall. As mentioned previously, these three model performance metrics are calculated from ground truth 
hold-out data (66 quarter days) that were randomly selected and not used for the model training. In 
addition, 27 days (108 quarter-days) from March 2015 at SGP C1 are used to further evaluate the model. 
The metrics for the MPLCMASKML VAP cloud masks produced from 2015 SGP MPL data are shown 
below in Table 2. We also include the metrics for the MPLCMASK algorithm on the same data sets in 
Table 3 for comparison. 

Table 2. Performance metrics of the cloud mask detection model (MPLCMASKML) on the ground 
truth hold-out data set (“Hold-Out”) and the March 2015 data set (“March”). 

F1-Score Precision Recall 

Hold-Out 0.8790 0.8505 0.9094 

March 0.8626 0.8432 0.8829 

Table 3. Performance metrics of the MPLCMASK cloud mask on the ground truth hold-out data set 
(“Hold-Out”) and the March 2015 data set (“March”). 

F1-Score Precision Recall 

Hold-Out 0.5892 0.4423 0.8795 

March 0.65 0.5072 0.9049 

Overall, the MPLCMASKML model outperforms the MPLCMASK algorithm, achieving higher 
F1-Scores and double the precision. 

8.2 Transfer Learning 

Transfer learning is a machine-learning technique that includes applying a model that was trained with 
one data set to different but related data sets. In the case of the MPLCMASKML VAP, the dominant 
training data for the model is from an ARM MPL that was operating at the SGP site during the winter and 
early spring of 2015. That specific MPL instrument, together with the location and the time period of this 
data, characterize the model that is trained with this data. 

Two features of the specific MPL can set its lidar data output apart from others: calibration and 
polarization. The MPL calibration is fortunately not an issue because it is effectively removed or 
normalized during the pre-processing of the model input data. Changes in an instrument’s polarization 
behavior, however, can be an issue. If the polarization degrades significantly, the LDR values increase, 
and the model struggles to accurately distinguish clouds from clear air or aerosol. 

The cloud types and atmospheric conditions present in the MPL data vary by location and time period. 
For example, a climatology examination of cloud types at the mid-latitude SGP site (Lim 2019) found 
cirrus clouds were the dominant cloud type, while in the Arctic, stratiform clouds prevail (Serreze 2005, 
Przybylak 2003). Seasonal variations are also observed in these two contrasting environments. The same 
study of clouds at the SGP site found low clouds were more than twice as frequent during February and 
March than July and August. Shupe (2011) also illustrated a distinction between summer and winter arctic 
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clouds in terms of both height and phase. It was found that the cloud height increased significantly in 
summer. Likewise, mixed-phases cloud occurrence had a minimum in the winter season but increased in 
summer. 

Because the training data is representative of a specific data set, a model trained on data from a MPL 
operating at a mid-latitude site may not necessarily perform as well on data from a different MPL 
operating at an arctic location. 

8.3 Application of Transfer Learning 

To test the transfer learning ability of the MPLCMASKML model, the VAP was applied to data from the 
ARM arctic site at Oliktok Point (OLI), North Slope of Alaska. For OLI, the model was evaluated on 
14 days (56 quarter-days) of hand-labeled data from May 2016. The performance is shown below in 
Table 4. 

Table 4. Performance metrics of the cloud mask detection model (MPLCMASKML) and 
MPLCMASK algorithm on the OLI data set. 

F1-Score Precision Recall 

MPLCMASKML 0.7530 0.7438 0.7643 

MPLCMASK 0.4185 0.371 0.48 

Like the SGP data set, the MPLCMASKML achieves better overall performance compared to the 
MPLCMASK algorithm. One reason for the improvement in performance is that the MPLCMASKML 
can identify clouds below 500m, which are very common at the OLI site (see Figure 3). These results 
demonstrate the favorable transfer-learning ability of the MPLCMASKML model and that from a single 
model it can produce significantly improved cloud masks at different observation sites. 
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Figure 3. Example plots from Oliktok Point (OLI) show the log of the normalized relative backscatter 
(log10 NRB), linear depolarization ratio (LDR), and cloud masks for MPLCMASK and 
MPLCMASKML for February 20, 2015. Mixed-phase stratus clouds prevail 15-24 UTC with 
boundary-layer clouds also present below 2 km. 

9.0 Production Data 
Production data is currently available for the following sites and date ranges (inclusive): 

Table 5. Available evaluation data. 

Site and Facility Start Date End Date 

SGP C1 2010-07-10 Present day 

ENA C1 2013-10-03 Present day 

NSA C1 2010-10-09 Present day 

OLI M1 2013-09-13 2021-06-13 

COR M1 2018-09-27 2019-04-30 

AWR M1 2015-12-01 2017-01-02 
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